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It is argued that the point structure of space and time must be constructed from 
the primitive "extensional" character of space and time. A procedure for doing 
this is laid down and applied to one-dimensional and two-dimensional systems 
of abstract "extensions." Topological and metrical properties of the constructed 
point systems, which differ nontrivially from the usual • and R 2 models, are 
examined. Briefly, constructed points are associated with "directions" and the 
Cartesian point is split. In one-dimension each point splits into a point pair 
compatible with the linear ordering. An application to one-dimensional particle 
motion is given, with the result that natural topological assumptions force the 
number of "left point, right point" transitions to remain locally fnite in a 
continuous motion. In general, Cartesian points are seen to correspond to certain 
filters on a suitable Boolean algebra. Constructed points correspond to ultrafilters. 
Thus, point construction gives a natural refinement of the Cartesian systems. 

1. I N T R O D U C T I O N  

The purpose  of this paper  is twofold: (1) To reexamine the classical 
or Car tes ian concept  of a po in t  and  to define and  apply a poin t -cons t ruc t ion  
procedure  in sui tably defined models  of one- and  two-d imens iona l  spaces 
of e lemental  extensions,  and  (2) to investigate some topological  and metrical 

propert ies of the constructed point  systems and  examine certain of their 
consequences .  

The new poin t  structures can be looked on as refinements of the usual  
con t inuum-based  structures as a result of  the "spl i t t ing"  of the Cartesian 

points  of space (and time). The nature  of the split t ing turns out to depend  

on  the local "ex tens iona l"  structure of the space. While the const ruct ion 
procedure  used is based on a combina t ion  of the methods  of Russell and  
Whitehead,  the close connec t ion  with the concepts  of modern  set theory is 
brought  out  in Section 8. It turns  out that, in a sui tably defined and  na tura l  
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Boolean algebra, classical or Cartesian points are filters and constructed 
points free ultrafilters. This justifies the description of the constructed (or 
"ultrapoint") systems as refinements of the classical systems. 

Interestingly, a new geometrically based concept of "state" for point 
particles is suggested. In one dimension, for example, each Cartesian point 
is replaced by a pair of ultrapoints. This can be utilized by classifying point 
particles in one of two states, depending on the member of  the constructed 
pair with which it is associated. Under natural topologizations of one- 
dimensional space and time (itself presented as a constructed point system) 
a motion involving what would be discontinuous changes of state in the 
classical picture appears as continuous in the new structure. The requirement 
of continuity in these topologies imposes, however, the restriction to a 
locally finite number of  such changes of state. 

The order structure of the systems of ultrapoints suggests a very natural 
and geometrical way of introducing infinitesimals. This is not followed up 
in the present paper, as natural topologies support conventional metrics as 
mentioned. There appears to be scope for further developments. 

2. THE BACKGROUND TO POINT CONSTRUCTION 

Independently and working after their collaboration on the Principia, 
Whitehead and Russell sought to answer this question. Whitehead (1920) 
took the more obvious approach, relating the ideas of a point in space and 
an instant in time to that of idealized locations characterized as the union 
of certain sequences of diminishing extensions, and succeeded in recovering 
the point structure of four-dimensional space-time. In a more restricted 
context, Russell (1936) took a subtler approach and derived certain sufficient 
conditions for classes of overlapping events to constitute instants of time. 

Both logicians baulked at the idea of using abstract extensions as the 
elements of their theories. [Difficult problems of reference are encountered, 
which are treated elsewhere (Blodwell, 1978).] But their insistence on 
working with actual events as the primitive terms in their theoretical con- 
structions effectively prevented their analyses from producing anything new. 
In fact, it is possible, using a slightly modified form of Russell's condition 
and applying it in a system of abstract elemental extensions, to develop 
interesting refinements of the Cartesian point structures of familiar spaces. 
In this paper the line and plane will be treated. 

Russell took as primitive the idea of events overlapping in time. His 
treatment did not consider relativistic effects and one assumes that his events 
are defined locally as observed by the same observer. His definition was 
based on the idea that an instant in time is essentially characterized by the 
set of all events occurring at that instant. He expressed this formally by 
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means of  two conditions that had to be satisfied by a set of events St if this 
was to be classed as a point in time: (1) Every event in St must overlap 
every other event; (2) any event overlapping every event in St must itself 
be a member of St. An ordering on the instants was defined by treating the 
relation "wholly preceding" between events as primitive, so that, given St 
and St, the instant t' would be later than t if and only if there existed an 
event in St wholly preceding some event in St. 

In this paper this approach will be taken, that is, a point will be defined 
as a certain set of elemental extensions, but in a suitably generalized form. 

The logical problems of dealing directly with a system of abstract 
elemental extensions requires working with a generalization of a condition 
satisfied by the set-theoretic construction of the natural numbers, namely 
that the construction of the elements of the system automatically determines 
their interrelations. These problems are not of present concern. Suffice it 
to say that the procedure for constructing such a system, called a relation 
space, simultaneously constructs a primitive binary asymmetric relation 
denoted by G. In the present context this relation can be represented as 
follows: aGb means: b is wholly "covered" by a with no "coincidence of 
boundary."  This is shown diagrammatically in Fig. 1 (this representation 
is entirely informal in the context of this paper). 

In the construction theory, once G has been defined, o n e  has great 
freedom in producing axioms for different relation spaces. Of crucial sig- 
nificance for any spaces of physical interest is the requirement that there 
be no minimal elements relative to G, expressing the nonexistence of 
minimal extensions of space or time. 

Other relations, of interest in the sequel, that can be defined in relation 
spaces sufficiently rich in elements are as follows: 

Definition 2.1. aSbc:>(3x)(aGx A bGx). 
Informally, '~ overlaps b," represented diagrammatically in Fig. 2. 

Definition 2.2. aNobC:~(Vx)~(aGb) A (bGx~aGx) ,  so aN6a, but N~ 
is not otherwise symmetrical (see Fig. 3). 

Fig. 1. 
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Fig. 2. 

~ a 

Fig. 3. 

Fig. 4. 

2 1, 

Fig. 5. 



Splitting the Cartesian Point 1005 

Definition 2.3. a D b c ~ ( 3 e ) ( V x ) ( c G a  A ( b G x ~ ( c G x ) )  (see Fig. 4). 

Definition 2.4. a N D b c z > ( V c ) ( 3 x ) ( c G a ~ ( c G x  ^ bGx)) (see Fig. 5). 

Note that the symmetry of No and D, intuitively obvious form our 
usual spatial concepts, would depend on whether the relevant elements 
were provided by the axioms of the particular relation space in question. 

Some further notation is necessary. 

Definition 2.5. S' y = {xlxSy}. 

Definition 2.6. S'y = {x I ySx}. 

Definition 2.7. S"fl = {x l (3y) (  y c [3 A xSy}. 

Definition 2.8. p' S" fl = { xl ( V y ) ( y ~ fl ~ xSy }. 

It is convenient to introduce the notion of  a d-set: 

Definition 2.9. A = { x l ( V u ) ( u G a ~ u G x ) } .  

The convention of associating with each elemental extension a its d-set, 
denoted by corresponding capital A, is retained for the sequel. 

Point construction is very sensitive to the "connectedness" of elemental 
extensions. In this paper elemental extensions are taken to be "connected," 
where the precise meaning of this term will be clear when the particular 
models are described. The justification of  this rests on the basic idea of 
taking elemental extensions as primitive. Then "disconnected" elemental 
extensions are simply distinct elemental extensions, and any concept 
analogous to set-theoretic union is incompatible with this primitivity. 

Further, the existence of points depends on the "richness" of the 
elemental extensions making up a relation space. In particular, the intersec- 
tion or overlapping properties are of great importance. Elemental extensions 
overlap in elemental extensions. Typically, in the notation of d-sets we 

Fig. 6. 
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have, for given elements a and b, 

A n B = U  C,^(-'} C, nC~=O 
i~l  i#3 

See Fig. 6, where c~, c2 are elements in which a and b overlap. 
Returning to Russell 's definition of  a point given in the introduction, 

it is noted that it can be formally stated 

a is a point if and only if a = p'S"a 

The suitability for application of this definition depends on the nature of  
the sets in which elements are permitted to overlap. 

I f  the axioms for a relation space permit infinite overlappings (i.e., the 
index set I above is infinite), then the Russell definition is unsuitable for 
spaces of  more than one dimension. In this case it is necessary to strengthen 
the definition of a point. This can be done by introducing a new relation So: 

Definition 2.10. xSoy<::>(3z)(zc X m Ynp'S"O). 

This means that a set of  elemental extensions is a point if and only if (1) 
every element of  0 overlaps every other element of  0 in elements that 
themselves overlap every member  of  0, and (2) every element that overlaps 
every element of  0 in elements that also overlap every element of  0 itself 
belongs to 0. 

In this paper,  though the stronger definition is mentioned, we make 
no further use of  it beyond a reference in Section 6. In this section, dealing 
with point construction in a two-dimensional space, it is indicated how the 
strengthened definition would yield points when the original Russell 
definition would fail to do so. It happens that, even so, the order structure 
of  the ensuing point complexes loses any intuitive coherence, though this 
does not of  course imply that it is ultimately without interest. 

One can see even at this stage that it is not possible that two elements 
have a point in common unless they overlap in other elemental extensions. 
This means that the Cartesian idea of "elements"  disjoint everywhere except 
at common boundary points is inadmissible here. 

3. P O I N T  C O N S T R U C T I O N  ON THE LINE 

The emphasis in this paper  lies on point construction and its results 
rather than on axiomatic development of relation spaces from their primitive 
origins. Hence the line will be defined as a set of  elemental extensions 
explicitly in terms of the reals. Properly speaking, we are treating a model 
of  the abstract relation space Sg~ defined elsewhere (Blodwell, 1978). The 
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elements of  this model of  s are defined to be the finite open intervals of  
R, and the naming convention as typified by 

x ~ ~ corresponds to (x~, x2), where x~, x2 6 R and x~ < x: 

The existence of the elements of s and their order structure is thus 
expressed here as properties of  R. 

For the relations defined in Section 2 we have the following results: 

1. aGb whenever a 1 < bl < b2 < a2. 
2. aSb whenever (a l ,  a2) c~ (b~, b2) 7 ~ ~ .  
3. a N ~ b  whenever ax = bl < b2-< a2 or a~ -< bl < b2 = a2. 
4. aDb whenever (a l ,  a2)r~ (bl,  b2) = Q and both a2 r bl, al ~ b2. 
5. a N o b  whenever (a l ,  a2) c~ (b~, b2) = Q and either al = b2 or a2 = bl. 

The following partial ordering relations are needed: 

6. x L y  whenever (x~, x2) ~ (Yl ,  Y2) = ~i and x2<y~ .  
7. x R y  whenever (x~, x2)c~ (ya, Y2)= Q and y 2 < x l .  

The following composite relations are needed in order to characterize 
first and last points of  an element of ~1: 

Definition 3.1. xL ISye :>(3u) (xLu  c~ uSy).  

This holds in the ~ model when ( X l , X 2 ) ~ ( y ~ , y 2 ) r  and X z < y  2. This 
gives rise to the following set: 

Definition 3.2. {x lxLISy  } = L"S'  y. 

The relations x R I S y  and the set R"Sy  are similarly defined. 

P~: The Point Structure o f  Sly. The "first point"  of  a e s is the set a, 
where 

a =- S 'a  - L " S ' a  = p " S a a  

It is not difficult to verify that a is made up precisely of  those elements x 
corresponding to (x~, x2) where x--- aa < x2. That is, a is the set of  intervals 
overlapping a but not beginning to the left of  any interval overlapping a. 
In the relational notation a is made up of all those x in the set 

G'  a c~ ( ]Qba - L"S'  a) ~ 1Q'~a c~ ( S"R '  a c~ S' a) 

In a similar way a has a "last point"  /3 defined by 

fl ==- S'  a - R"S '  a = p'  ~"S t3 fl 

Again, it may be verified that /3  is made up of all those intervals (Xl, x2) 
where Xl < a 2 -  x2. 
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Thus, given elements a and b of ~1 where aNDb and aLb (that is, 
al < a2 = bl < b2), it follows that the common "boundary"  point of  their 
Cartesian representation is "split" into two points, 

lO-={(xl,x2)lxl<a2<-x2}, 01={(Xl,X2)ixl<-bl<x2} 

The points are evidently distinct, since a c 10 - 01 and b e 01 - l O. An ordering 
on Pl may be defined in terms of the partial ordering L on 5fl. 

Definition 3.3. a < fl r ( 3 x ) ( 3 y ) ( x  e a ^ y e/3 A xLy). 

By using the completeness of •, it may be shown that every point in 
P1 is either a "left point" (or "last point") or a "right point" or ("first 
point") like 10 (or/3) and 01 (or a) ,  respectively. It follows from this that 
the < order on Pl is a total order. 

Evidently there is no point s r such that 10 5 ~ ( 01' for this would entail 
the existence of an element x where x ~ L'a n L'a. There is no such interval. 
Hence 10 and 01 are strictly consecutive. 

Since each Cartesian point in g~ can be looked on as a boundary point 
between disjoint open intervals, it follows that to each point of ~ there 
corresponds such a point pair {10, 01}. Hence P1 is a continuum of point 
pairs that are strictly consecutive in the total < ordering. To illustrate, 
consider the Cartesian points 1 and 2. The constructed point system Pl 
splits there, giving {11, 11} and {12, 21}. 

Of course, 11 ~ 11 ~ 12 < 21, since, for example, 

(�89 1 ) e l l ,  (1, 1�89 11, (1�89 11, (1�89 12, (2 ,3)e21 

4. TOP OLOGI ZATION AND METRIZATION OF Pl 

Two topologies are considered. 

4.1. The Open-Interval Topology 

Let the set of left points of ~1 be denoted by P~I and the set of right 
points by P ~. 

Define open intervals of left (right) points as follows: 

Definition 4.1. (la, lfl)={10[OL<0</3}. 

Definition 4.2. (al ,  fix) ={01[a < 0</3}. 

Let 11(/2) be the set of all open intervals of P~ (P~). Then I1 u 12 is the 
basis for a topology T on Pl that induces the Euclidean topology on both 
P~l and P~. First it is noted that T is normal. To see this, it is observed that 
any set closed in T is the union of sets closed in Pt 1 and P~, and conversely 
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that the union of such sets is closed in T. Since the Euclidean topology is 
normal, disjoint sets closed in T can be contained in disjoint sets open in T. 

Since T is normal, there exists a metric function d: PI X PI--'>P that 
induces T on P1. 

The condition 

d(ltX, lV)=d(lx~,v , )=l lx-v  I for any lz, v e R  

is imposed so that d may induce the Euclidean metric on P tl and P~. 
Clearly the conditions for a metric function require that d( l~,  l-q) > 0, 

since 1/x and/~1 are distinct points. The question arises; "Can this length 
vary as k~ varies over R?" To give a partial answer to this it is necessary to 
consider ways of defining d(1/x, Vl) and d(/Xl,lV). Note first that 
l i m . ~  d(/xl,  1~')~ 0 if this limit exists, since iv is not a limit point of  the 
set (/xl, v0. Thus, it is not permitted to define d (~ l ,  1 v) = ]v -/~[ in general. 
Similarly, d(ltX, Vl) = Iv - / x  I is also ruled out. In giving the definition follow- 
ing, the idea is that to "move"  a point from iv to /xl  a "flip over" from a 
left to a right point must be made somewhere between IX and v, and similarly 
for the distance between vl and d~. First, for brevity the function f is 
defined, where f :  R --> R: 

Definition 4.3. d(ll.~, Ix~) =fOx)  for all ke ~ .  

Suppose that the definition of d is completed by: 

(a) f is continuous. 
(b) d(1/x, vl) = d (~ l ,  11-')= Iv --/z[ +inff0(<O .) 

Under these assumptions we have the following result: 

Theorem. f is constant on R. 

Proof I f f  is not constant, then for some a and 0 e ~, if 01 ~ [a  - 0 ,  a ]  
and 02 e [a,  a +0], then f(01) <f (02)  or f(01) >f(02). This follows from the 
continuity o f f  and considerations similar to those used in the proof  of the 
Intermediate Value Theorem. To illustrate the argument, the former case 
is considered. Take ~, v, p, where F < v < a < p, sufficiently close to a such 
that 

1[ inf f ( O ) - f ( p ) ] > p - v  

This contradicts the triangle inequality for d, however, since 

d(,lz, vl) > d(,be, ,p) + d(lp, p~) + d(pl, v,) 
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We have 
v - ~ +  inf f ( O ) - [ p - l . ~ + f ( p ) + p - u )  

tx~O<<_v 

= inf f ( O ) + 2 u - 2 p - f ( p )  
tx<_O<v 

= inf f ( O ) - f ( p ) + 2 ( v - p ) > O  
iz<-O~v 

by the above inequality. Hence, d as defined above is not a metric. To avoid 
the contradiction, it is necessary to have inf~<0<~ f(O) = f ( p )  whatever the 
values of  tx, u, and p, subject to the above assumption, so that f is constant 
in the neighborhood of a. By a suitable generalization of this argument it 
can be concluded that a continuous f must be constant everywhere on R. 

The most natural metric inducing T is then given as follows: 

Definition 4.4. d(1/z , 1/.') = d(/~l, ul) = lu - / z [  

d(1/x, vl) = d(txl, l v ) = l v -  ~l+ k 

for all /~, u c R, where k is the constant "fl ipover" distance d(ltz, Pl)  for 

all tz. 

4.2. The Inner-Interval Topology 

Associate with each element x of  L 1 the set of points X, where for any 
point p ~ P1, P ~ X C:>x ~ p (the term X must be distinguished by context 
from the d-set, also denoted by X and associated with x, defined in 
Definition 2.9). 

A topology F is given by taking the collection of such sets together 
with the null set • and the universal set P1 as a basis. 

A typical basis set of F, with (a, /3) corresponding to x (see Section 
3), is the "inner interval" [ a l ,  lfl]. The square brackets indicate that a l  and 
1/3, the first and last points of x, belong to the basis set. Note that such sets 
are in a sense the analogues of  the closed intervals in R, since la  and fll 
do not belong to the closure of [al, 1/3]. Indeed, [ a l ,  1/3] is itself closed, 
so that F is then zero-dimensional. Since F is clearly a Lindelof space, it 
is strongly zero-dimensional, but is not extremely disconnected; although 
it is not difficult to see that F is normal, it is not second countable, and 
therefore not metrizable under the usual assumptions of set theory. 

5. AN APPLICATION TO O N E - D I M E N S I O N A L  M O T I O N  

Denote a one-dimensional space of point pairs by $1, and let it be 
endowed with the open-interval topology H described in Section 4.1. Denote 



Splitting the Cartesian Point 1011 

the one-dimensional  time o f  " instant  pairs"  by T and let it be endowed 
with the inner-interval topology  F described in Section 4.2. A particle P 
will be considered as a point  particle in $1 by being associated with the 
constructed points o f  $1, and similarly an instant o f  time will be either a 
"left instant"  or a "r ight  instant." A pseudometr ic  will be imposed on T 
as follows: 

Definition 5.1. d(1ot , o~1) ---0 for all a 

d(lot, 1/3) = d (a l , /31)  = d(lot, ill) = d(otl, 1/3) = lot = i l l  

Each point  o f  S 1 is of  course either a left or  a right point,  and so two kinds 
o f  particle are considered,  namely  left-pointing or  right-pointing. A possible 
mot ion  of  a particle P will be a cont inuous map f :  T-~ $1 such that f ( l t )  = 
f ( t l ) = l a  for  a left-pointing particle and g ( l t ) = g ( t l ) = a l  for  a right- 
point ing particle for classical times t and points Ot. One can think of  it as 
the instant o f  arrival o f  P at lO/and tl as the instant o f  departure,  with zero 
time between these instants. For  such motions  the use o f  the instant-pair  
time system int roduces  nothing new, but a more  interesting possibility arises 
when t ransformat ions  between left- and right-pointing particles are con- 
sidered. 

A t ransformat ion of  a left-pointing to a r ight-pointing particle occurr ing 
during a mot ion  defined as follows: 

h: T - S 1  where h(lt) 

h ( : )  

h(sl) 

h(lt) 

= h ( t t ) = l  a, t < s  

=1/3 }, t = s  
=/31 
= h ( t l ) = a  1 t > s  

This mot ion  is sequentially cont inuous at bo th  the left and right points l f l  

and fll associated with such a t ransformat ion over the point- instant  
interval is and sl associated with the classical instant  s. To see this, consider 
any pair  o f  sequences {1 t~i)}, {t~i)}, where t ~1) < t ~2) �9 �9 �9 < t ~g) < t ~+1) . �9 �9 < s, 
which are such that limg~o~ it ~g)= is and limi_~oo t~ i)= is in the F topo logy  
on T. However ,  l imi_~ h(1 t~i)) = 1/3 and also limioo~ h(t~ ~)) = lfl = h ( : ) .  
Similarly for sequences {lull)}, {u~i)}, where u~ 
u ~;+1) - �9 . > s, and l im;o~ u ~) = s it follows that  lim~o~ (lu ~i)) = sl and lim~_~ 
h(lU ~i)) = i l l  = h(Sl); and also limi_,o~ (u~ i)) = sl and limi_~ h(u~ i)) =ill = 
h(sl). Now,  h is clearly sequentially cont inuous  at other points,  so that  the 
mot ion  of  the left-pointing particle up to 1/3, and its t ransformat ion to a 
r ight-pointing particle expressed by its occurrence at/31, together with its 
subsequent  mot ion  to the right of/31, is everywhere sequentially continuous.  
The number  o f  such t ransformat ions  must, however,  be locally finite. To 
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see this, consider the sequence {t(")}, where t(")< t (n+l) and limi_~o~ t ~n)= s. 
Now consider a function g such that 

g(l t(2n-1)) = l~ (2n - l ) ;  g(t~ 2n-1)) = OL~ 2n-l )  

and 

and that 

g( l t  ~2")) = a]2"); g(t~ 2")) = la  (2") for each n 

g ( l t )  ---- lOl for t < t  0) 

g( l t )=g( t l )=Cq for t (2"-~)<t<t ~2"~ 

g ( l t ) = g ( t l ) = l a  for t (2n)<t<t (2n+1) 

i.e., a left-pointing particle arrives at la(~) from the left and is transformed 
into a right-pointing particle and moves on to the right, transforming back 
to a left-pointing particle at the ~t (2), t~ 2) point pair, moving on, and 
transforming infinitely often as t-> s. Supposing that the particle exists at 
the classical time s, it does so as either a left- or right-pointing particle. For 
definiteness take g(~s)= ~y, where lim,.~o a ( " )=  3'. Now define the sub- 
sequences {t(2")}, {t(2n+l)}. Then 

lim 1 t (2n)=  lim ,(2,+1) ~ 1  = 1 S 
n --~ cx~ n ~ o o  

But 

lim ( i t  (2n+1)) = l y  = g ( 1 s ) ,  
n --~ oo  

lim g( t~ 2~+~)) = ")/1 y~ g(sl) 
i ~ o o  

so that g cannot be sequentially continuous at s. This precludes the possibil- 
ity that a sequentially continuous motion can contain any pattern of  infinitely 
repeated transformations in any finite region of the one-dimensional space. 

6. P O I N T  C O N S T R U C T I O N  IN THE P L A N E  -~2 

As in the case of  the line ~1 it would be inappropriate to write down 
a set of abstract axioms. The system is presented in terms of a concrete 
model. The elemental extensions of  ~2 are defined as the open interiors of  
a certain set B of closed and bounded one-parameter  paths in R 2. Each 
such path is looked on as an image of the unit interval I = [0, 1], with first 
and last points identified satisfying certain finiteness conditions. More 
precisely, i f f c  B, then the following holds: 

Definition 6.1. (a) f ( 0 ) = f ( 1 ) .  
(b) f is left and right differentiable everywhere, with inequality at most 

at a finite number  of points. 
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Fig. 7. 

(c) If  P is the set of lines in R 2, then for each 1 ~ P, f ( I )  n I is either: 
(i) null, (ii) a finite number of discrete points, or (iii) a finite number of 
discrete closed intervals on a finite number of lines. 

The strong finiteness conditions are chosen to ensure that the point 
complexes replacing each Cartesian point of the plane are locally ordered, 
in a sense of the term order to be made clear. 

Of course it is possible to find many sets of closed paths in R 2 satisfying 
these requirements. The simplest choice for B would be to restrict the range 
of f to line segments of the form 

{(kl, Y)IYl ~ Y <- Y2} and {(x, k2)lxl <- x <- x2} 

with k, and k2 constants. That is, the elemental extensions would be the 
open interiors of regions typified as shown in Fig. 7. It is of interest to 
examine the point structure for such a system. To do so, consider the points 
associated with the origin (0,0) of the system R 2 used for defining the 
model. Let S~ '~ be the element corresponding to the open interior of a 
square with corners at (0, 0), (e, 0), (e, e), and (0, e). Let $2, $3, $4 be 
similar squares drawn in the second, third, and fourth quadrants. Then it 
is easy to see that 0a = { x l ( 3 e ) ( s ~ l ~ c  x)} is such that, for all x, y c 0 , ,  xSo,y 
and that 0~ is a point. Similarly, 02, 03, 04 are points with S~ 2), S(] ), S (4) 
replacing S~ I~ in the definition of 01. 

In an order-theoretic sense this four-point cluster associated with the 
single Cartesian point at the origin is similar to the cluster obtained by 
taking the Cartesian product P, x Pl.  There is a subtle difference that may 
be informally expressed diagrammatically as shown in Fig. 8. Figure 8a 
expresses the structure for the simple example of a two-dimensional space 
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dP �9 

Fig. 8. 

! 
o �9 

0,) 

of  elemental extensions considered above; Fig. 8b illustrates the structure 
of each point cluster of P1 x P1- The former case illustrates the association 
of each point with a set of "two-dimensional" extensions; the latter illus- 
trates the case where the elemental extensions belong to the constituent 
systems only. 

This kind of distinction vanishes when B is enlarged, say to admit all 
possible line segments of R 2. In this case the point cluster associated with 
each Cartesian point is a system of  point pairs order-isomorphic to the 
circle (Fig. 9). To make the structure of each constructed point explicit, 
choose as an example that pair O~ • associated with the line y = m x  in the 
first quadrant (m > O; x > 0). Let m~,, denote, respectively, the elemental 
extensions corresponding to the open regions bounded by 

x, m x )  O<-x < - , x , ( m + ~ ) ) x  < - x <  _ -  , 
m + ~ )  

m + r l  

and 

where Ir/I is small (see Fig. 10). The points 0+~, 0m are defined as follows. 

Defini t ion 6.2. OL = { x l 3 e ,  ~ > 0 x  = m~} .  



Splitting the Cartesian Point 1015 

Fig. 9. 

As indicated, this pair is associated with the s ingle  line segment, namely 
that part  of  y = m x  defined for O < - x  < - e / m .  Were the version of the plane 
to be restricted by discrete choices for ~7, a similar situation to the first 
version considered would recur, with each point being associated with a 
"consecutive" e, ~7 pair. The richest version of the plane will be obtained 
by taking a maximal B compatible with Definition 6.1. To express the order 
structure of  the cluster replacing each Cartesian point, it is necessary to 

I .y=(~,,,'~)x . 

I I . y-rex 

. !, - 7 - f - - - - / m -  y-_(~-~)x 

T[ / Y_k  
! i 

1 : 
Fig. 10. 
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recall the definition of an r/l-set. A linearly ordered set A is an ~71-set if 
for all sequences {xl, x2, �9 �9 �9 } and all elements x such .that xl < x2 <" �9 �9 < x, 
there must exist a y where xi < y  < x  for all xi. That is, no denumerable 
sequence can "converge" to any element in the natural topology. An 
rh-circle will be defined by taking a linearly ordered ~l-set with first and 
last elements, identifying these end elements and adapting the definition of 
the ordering. The point cluster replacing the Cartesian point when B is 
taken maximally will be such an ~%-circle of point pairs. 

To end this section, the effect of relaxing the finiteness conditions of 
Definition 6.1 is noted. If infinite overlappings are permitted, then 5f2 
contains elements corresponding to the set defined according to the follow- 
ing inequalities: 

l>x>O;  2 > y  and y > s i n  1 if s i n l > o ,  otherwise y > O  
x x 

Then (Vx)(x ~ O+,.~ySx), in particular. But clearly y ~ 0~ by the definition 
of this set (Definition 6.2). Hence 0~ cannot be a point according to the 
Russell definition. However, 0+,, is preserved as a point according to the 
strengthened definition (Definition 2.10), since ~(ySox) for any x c 0+~. 

As might be expected, however, the introduction of such elemental 
extensions into the relation space leads to an enriching of the point structure. 
For example, the line y=sin(1/x) may replace the line y =  mx in an 
adaptation of the argument leading to the definition of the points 0+~ and 
07,. The new points cannot, however, be incorporated either into the order 
structure of the circle of  point pairs or to the ~71-circle of point pairs referred 
to above. 

7. TOP OLOGI ZATION AND METRIZATION OF THE PLANE 

The point system P2 for the plane will be taken to be that arising from 
the second of the three versions of the plane considered in Section 6. That 
is, each Cartesian point of N2 is replaced by a cluster of point pairs having 
the order structure of the circle, with the consecutive ordering of the members 
of a pair compatible with the local ordering on the circle. The elemental 
extensions in the model are bounded by line segments in R 2. Fixing some 
particular line l in the set P of all lines in N2 and taking a point p lying on 
this line, we assign the values 01, 02, 03, 04 to the four points, in the point 
cluster associated with p, associated with l (see Fig. 11). The set of lines Pp 
passing through p can be indexed relative to this reference line by the 
parameter 0, where 0 < 0 < ~r. At p each of these lines is associated with a 
four-point subcluster, itself associated with 0 and identified as above. 
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4,' "~ 
0,,.. "01 

Fig. 11. 

Typically these four points will be given the coordinates 01, 02, 03, 04 as 
in Fig. 12. 

The complete coordination of P2 assigns to each point a a triple of 
numbers (xl ,  x2, x3), where x~ and x2 are the Cartesian coordinates ( x l ,  x2) 
of the point p corresponding to the cluster of which a is a member; and 
x3 is of the form 01, 02, 03, 04 as described. 

Equivalence relations LI, L2, o n  ~2 are defined as follows: 

Defini t ion 7.1. 
(a) a L l  a l  if and only if both x I = x3 and (xl,  x2), (x~, x~) each belong 

to the same line segment of •2. 

(b) flL213 l if and only i fy l  = y~, y2= y~, Y3 = Y~ = Oi for the same  i, for 
0-- 0 < or. 

The topology Q on P2 is now defined: 

Defini t ion 7.2. A is open in Q if and only if the intersection of A with 
both the L1 and L 2 equivalence classes of P2 are open in their respective 
Euclidean topologies. 

For each individual cluster the topology induced by Q on the proper 
subintervals in the circular ordering is locally homeomorphic to the open- 
interval topology T on P~. 

Fig. 12. 
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The topological space (P2, Q) is metrizable. The metric d is realized 
as follows, where de denotes the Euclidean metric on R 2. 

Definition 7.3(0. d(ot, a l ) = d e ( p ~ , p l , ) C ~ a L a  I where p~ and p~ are 
the Cartesian points replaced by the clusters to which a and a ~, respectively, 
belong. 

Now the "flipover" distances d(O~, 02) and d(O3, 04) can be shown 
constant on each point cluster by an argument similar to that of the Theorem 
in Section 4; and by an extension of that argument to the two lines of point 
pairs associated with each Cartesian line segment, this constant is the same 
for every such cluster. Let k denote this constant. 

Definition 7.3(ii). 
d(a, ,  ~j) = La -a ' [ ,  

= 1 4 - ~ ' 1 + k ,  

= -Ia-a'h+k 

i = j = 1 , 2 , 3 , 4  

i ~ j  and either i , j  = 1, 2 
ori, j =  3, 4, 

i = l , j =  3; or i = 2 , j  =4  

i = l , j = 4 ; o r i = 2 , j = 3  

where p~ = p~, 

It remains to define the distance between nonequivalent points in different 
clusters. Suppose/zi and u s belong to different clusters, so p~, ~ p,. Let u(/zi) 
denote that point of the cluster associated with p~ that is L-equivalent to 
/zi; then we have the following result: 

Definition 7.3(iii). d(tz~, u~) = de(p~, p~) + d(l,:, v(/x~) ). 

The symmetry of d requires that d(u~, u(/z~)) = d(/xi, Iz(u:)). This gives an 
alternative argument for the universality of k. 

The topology Q has some interesting points of comparison with the 
fine topology introduced by Zeeman (1967) for space-time. It will be recalled 
that under the latter topology the image of any continuous map of the unit 
interval into Minkowski space-time is piecewise linear. The present situation 
is somewhat different, in that the continuous image of I would contain 
precisely one point of P~ from each of a set of Cartesian points. Under Q 
this latter set must be piecewise linear also. Thus, for example, if the 
Cartesian set is chosen to be the curve y - x z = 0 as between (0, 0) and (1, 1), 
and for each point p on this curve the constructed point 0~, say, is selected 
by requiring that, e.g., 0 = tan  -1 ( d y / d x ) , ,  then this map is nowhere con- 
tinuous. Continuity requires that the image consists of an L-equivalent set 
of  points of P1 selected from clusters corresponding to Cartesian points 
lying on line segments. The "linearity" here seems to be built in ab initio, 
but this is not really so, since no absolute characterization of "straightness" 
can be made prior to the introduction of  the metric function. The feature 
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is simply a result of  the order structure of the space of  lines at each Cartesian 
point of  R 2. When the richer version of the plane is considered, leading to 
the 7/1-set structure of  the point clusters, the topology analogous to Q is 
no longer second-countable. There is, however, the suggestion of a new 
approach to the definition of infinitesimals in a much more "concrete"  way 
than is provided, for example,  by an abstract treatment of  concurrent 
relations (Robinson, 1966). Indeed, the third version of the plane considered 
in Section 5 admits a concrete realization of  such relations. 

8. POINTS  AND ULTRAFILTERS 

A Boolean algebra (B, + , . , ' )  on a relation space ~ of elemental 
extensions is defined as follows: 

Definition 8.1. First, B = {~ lx  ~ ~<==>X_ ~},  where the notation util- 
izes Definition 2.9. 

The operations + and �9 are defined with ', complementation,  as follows: 

Definition 8.2. ~ g + ~ = { x l X c S " ( s g u ~ )  } (see Def. 2.7) 

~ r  = ~r ~ 

Recall that an ultrafilter U is defined on a Boolean algebra B as follows: 

1. I f~CEU and ~D~C,  then ~ U .  
2. If~r ~ U ,  then ~ r  
3. Q ~  U. (Points 1-3 characterize U as a filter on B.) 
4. I f  M ~ U ,  then ~r and if sC~U, then ~r �9 

To each Cartesian point in R and ~2 there corresponds a filter in the 
corresponding Boolean algebra of  elemental extensions. Further, to each 
point 0 of  P ( ~ )  there corresponds an ultrafilter of B. To see this, define a 
family Uo corresponding to 0 by the rule 

U0 then satisfies 1-4 above, where 2 follows from the fact that if x c ~ / n  0 
and y ~ ~ ~ 0, then xSy by definition of 0. By the axioms governing both 
LP1 and ~2 there exists a v such that V = X n Y. Hence, by definition of B, 
v ~ / n ~ .  But v~O also, so ( ~ / n ~ ) n 0 r S O .  This ensures ~ g n ~ U o .  
The other properties are immediate consequences of  the definitions. Hence 
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Uo is an ultrafilter. It is a free ultrafilter, since the point 0 is such that if 
its members are indexed in some set S, then f'-]i~s Xi = •. This expresses 
the fact that there are assumed to be no minimal spatial extensions. 

It must be noted that not every free ultrafilter defines a point. The 
assumption preventing this is embodied in Definition 6.1. Briefly, it is based 
on the requirement that elemental extensions may only intersect in a finite 
number  of  elemental extensions. An assumption of this kind is essential if 
any kind of  coherence is to be a property of  the order structure of the point 
clusters associated with each Cartesian point. The underlying consideration 
here is also evident in the one-dimensional case, where it amounts to a 
refusal to count, for example,  a pair of  disjoint intervals as corresponding 
to a third elemental extension in addition to those corresponding to the 
individual intervals. I f  this condition were relaxed, the simple two-point 
structure of  the point clusters in the one-dimensional case would also be 
lost. It is arguable that the assumptions actually made express something 
of the nature of  what elemental extensions "really" are, and that the 
consequent coherence of the clusters is natural rather than arbitrary. 

Because of the connection between free ultrafilters and constructed 
points, it is suggested that the latter be termed "ultrapoints." 
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